

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Disciplina 2:	Química II2	N° Questões:	40
Duração:	90 minutos	Alternativas por questão:	5
Ano:	2021		

INSTRUÇÕES

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do círculo por cima da letra. Por exemplo, pinte assim .
- 3. A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica (de cor azul ou preta).

Leia c	texto com atenção e responda às questões que se seguem.
1.	A aspirina tem uma densidade de 2,00 g/cm ³ . Qual é o volume (em centímetros cúbicos) de um comprimido de 100 mg?
1.	A. 200 cm ³ B. 100 cm ³ C. 50 cm ³ D. 0.02 cm ³ E. 0.05 cm ³
2.	A digitalina é um fármaco usado na reanimação de doentes cardíacos. Este fármaco deve ser administrado com muito
	cuidado pois, mesmo em pequenas <i>overdoses</i> , pode ser fatal. A administração deste fármaco é feita à base de mg/kg de
	massa corporal. Assim uma criança e um adulto, apesar de diferirem grandemente no peso, recebem a mesma dose por kg do corpo. Para uma dosagem de 20 μg/kg de peso corporal, quantos mg de digitalina devem ser ministrados para um
	indivíduo de peso médio de 60 kg?
	A. 1,2 mg B. 1200 mg C. 12 mg D. 0.003 mg E. 3 mg
3.	Um dos principais ingredientes dos palitos de fósforo é o clorato de potássio (KClO ₃). Esta substância pode ser usada como
	fonte de oxigénio para muitas reacções de combustão e reage violentamente com o açúcar da cana (C12H22O11), para dar
	cloreto de potássio, dióxido de carbono e água, de acordo com a reacção:
	$KClO_3 + C_{12}H_{22}O_{11} \rightarrow KCl + CO_2 + H_2O$
	Os coeficientes estequiométricos para a reacção acertada são respectivamente:
1	A. 1-1-1-12-11 B. 1-1-1-12-12 C. 1-1-1-12-2 D. 8-2-8-24-22 E. 8-1-8-12-11 PASSE PARA A PERGUNTA SEGUINTE.
<u>4.</u> <u>5.</u>	Considere uma reacção em uma etapa entre dois reagentes gasosos. O número de colisões por segundo será aumentado
٥.	por: (a) adição de mais reagentes a volume constante; (b) aumento do volume; (c) adição de um gás inerte; (d) aumento
	da temperatura.
	A. (a) e (c) B. (a) e (b) C. (a) e (d) D. (b) e (c) E. (b) e (d)
6.	Considere a reacção de combustão do metano, CH ₄ ,
	$CH_4(g) + 2O_2(g) \to CO_2(g) + 2H_2O(g)$.
	Se o metano é queimado a uma velocidade de 0.16 mol.dm ⁻³ , a que velocidades são formados os produtos, CO ₂ e H ₂ O?
	A. $d[CO_2]/dt = 0.16 \text{ mol.dm}^{-3}$; B. $d[CO_2]/dt = 0.16 \text{ mol.dm}^{-3}$; C. $d[CO_2]/dt = 0.16 \text{ mol.dm}^{-3}$;
	$d[H_2O]/dt = 0.08 \text{ mol.dm}^{-3}$ $d[H_2O]/dt = 0.16 \text{ mol.dm}^{-3}$ $d[H_2O]/dt = 0.32 \text{ mol.dm}^{-3}$
	D. $d[CO_2]/dt = 0.08 \text{ mol.dm}^{-3}$; E. $d[CO_2]/dt = 0.32 \text{ mol.dm}^{-3}$;
	$d[H_2O]/dt = 0.08 \text{ mol.dm}^{-3}$ $d[H_2O]/dt = 0.08 \text{ mol.dm}^{-3}$
7.	O sulfureto de hidrogénio (H2S) é um poluente encontrado comummente em águas residuais industriais. Uma forma de
	remoção de H ₂ S consiste em tratar a água com cloro (Cl ₂), de acordo com a reacção:
	$H_2S(aq) + Cl_2(aq) \rightarrow S(s) + H^+(aq) + Cl_1(aq)$
	Se a reacção for de primeira ordem para cada um dos reagentes, a constante de velocidade para a reacção do consumo de H ₂ S a 25 °C for 4 x 10 ⁻² M ⁻¹ .s ⁻¹ e se num dado instante a concentração de H ₂ S for 2 x 10 ⁻³ M e de Cl ₂ for 0.03 M, a velocidade
	da reacção será:
	A. $8 \times 10^{-5} \mathrm{M.s^{-1}}$ B. $12 \times 10^{-4} \mathrm{M.s^{-1}}$ C. $2.4 \times 10^{-6} \mathrm{M.s^{-1}}$ D. $2.4 \times 10^{-5} \mathrm{M.s^{-1}}$ E. $1.2 \times 10^{-6} \mathrm{M.s^{-1}}$
8.	Considere a reacção:
	$N_2O_4(g) \leftrightarrows 2NO_2(g)$ $\Delta H^{\circ} = 60.0 \text{ kJ}$
	Para que lado se deslocará o equilíbrio se: (a) adicionar N2O4; (b) adicionar de NO2; (c) aumentar a pressão; (d) aumentar
	o volume; (e) diminuir a temperatura?
	A. (a) direita (direcção dos produtos); (b) esquerda; (c) direita; (d) esquerda; (e) esquerda
	B. (a) direita; (b) esquerda; (c) esquerda; (e) direita
	C. (a) direita; (b) esquerda; (c) esquerda; (d) direita; (e) esquerda
	D. (a) esquerda; (b) esquerda; (c) esquerda; (d) direita; (e) esquerda E. (a) esquerda; (b) esquerda; (c) esquerda; (d) direita; (e) direita
	2. (a) esqueraa, (b) esqueraa, (c) esqueraa, (a) anena, (c) anena

9.	Dadas as seguintes reacções de equilíbrio:
	(a) $N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$; (b) $2NOBr(g) + Cl_2(g) \leftrightarrows 2NO(g) + 2BrCl(g)$; (c) $PbCl_2(s) \leftrightarrows Pb^{2+}(aq) + 2Cl^{-}(aq)$; (d) $CaCO_3(s)$
	$\leftrightarrows \operatorname{CaO}(s) + \operatorname{CO}_2(g)$
	As expressões das constantes de equilíbrio serão:
	A. (a) $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$ (b) $K_c = \frac{[NO]^2[BrCl]^2}{[NOBr]^2[Cl_2]}$ B. (a) $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$ (b) $K_c = \frac{[NO]^2[BrCl]^2}{[NOBr]^2[Cl_2]}$
	(c) $K_c = \frac{[Pb^{2+}][Cl^{-}]^2}{[PbCl_2]}$ (d) $K_c = [CaO][CO_2]$ (c) $K_c = [Pb^{2+}][Cl^{-}]^2$ (d) $K_c = [CO_2]$
	C. (a) $K_c = \frac{[\text{NH}_3]^2}{[\text{N}_2]^2[\text{H}_2]^3}$ (b) $K_c = \frac{[\text{NO}]^2[\text{BrCl}]^2}{[\text{NOBr}]^2[\text{Cl}_2]}$ D. (a) $K_c = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3}$ (b) $K_c = \frac{[\text{NO}]^2[\text{BrCl}]^2}{[\text{NOBr}]^2[\text{Cl}_2]}$
	(c) $K_c = [Pb^{2+}][Cl^{-}]^2$ (d) $K_c = [CaO][CO_2]$ (e) $K_c = [Pb^{2+}][Cl^{-}]^2$ (d) $K_c = [CaO][CO_2]^2$
	E. (a) $K_c = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3}$ (b) $K_c = \frac{[\text{NO}]^2[\text{BrCl}]^2}{[\text{NOBr}]^2[\text{Cl}_2]^2}$
	(c) $K_c = [Pb^{2+}][Cl^{-}]^2$ (d) $K_c = [CO_2]$
10.	A 1000 K o valor de K _p da reacção 2SO ₃ (g) \(\simeq 2SO ₂ (g) + O ₂ (g) \(\nabla 0.338\). Calcule o valor de Q _p e diga em que direcção a reacção prosseguirá para o equilíbrio se inicialmente as pressões parciais forem: P _{SO₃} = 0. 2 atm; P _{SO₂} = 0. 4 atm; P _{O₂} = 2. 0 atm. A. Q _p = 0.016 atm; direita (formação B. Q _p = 0.16 atm; direita C. Q _p = 4.00 atm; esquerda
	dos produtos) (formação do reagente)
11.	D. $Q_p = 8,00$ atm; esquerda E. $Q_p = 4,00$ atm; direita O K_c da reacção $H_2(g) + I_2(g) \leftrightarrows 2HI(g)$ é 4. Quais serão as concentrações no equilíbrio das três espécies (H_2 , I_2 e HI), se as
	concentrações iniciais de H ₂ e I ₂ forem iguais a 1 mol/L e a de HI igual a zero? A. [H ₂] = [I ₂] = [HI] = 0,5 mol/L; B. [H ₂] = [I ₂] = 0,5 mol/L; [HI] = 0,25 mol/L C. [H ₂] = [I ₂] = 0,5 mol/L; [HI] = 1,0 mol/L E. [H ₂] = [I ₂] = 1,0 mol/L; [HI] = 0,5 mol/L
12.	Dissolve-se 2 g de NaOH em água suficiente para formar 200 ml de solução. A molaridade da solução será: (Massas
	atómicas: Na – 23; O – 16; H – 1 g/mol) A. 2 M B. 0,01 M C. 0,05 M D. 0,25 M E. 0,5 M
13.	Suponha que a solução de NaOH 20% (em massa) tem a densidade de 1 g/ml. A molaridade desta solução será: (Massas
	atómicas: Na – 23; O – 16; H – 1 g/mol)
14.	A. 2 M B. 0,02 M C. 5 M D. 1 M E. 0,5 M A 150 ml de uma solução 0,2 M de HCl são adicionados 350 ml de água. A nova concentração da solução será:
	A. 0,3 M B. 0,1 M C. 0,03 M D. 0,6 M E. 0,06 M
15.	Tem-se uma solução com a concentração do ião hidroxilo (OH ⁻) 0.01 M. Pode-se dizer que a solução tem: A. $[H^+] = 10^{-8} \text{ M e pH} = 8$ B. $[H^+] = 0.01 \text{ M e pH} = 2$ C. $[H^+] = 10^{-12} \text{ M e pH} = 2$ D. $[H^+] = 10^{-12} \text{ M e pH} = 12$ E. $[H^+] = 0 \text{ M e pH} = 2$
16.	Dados os seguintes sais: NaCl, KNO3, NH4NO3 e NaCN. As soluções aquosas destes sais serão respectivamente: A. Ácida – básica – neutra – neutra – básica – b
17.	O ácido acético, CH ₃ COOH, o ácido do vinagre, é usado como precursor de outros compostos químicos. Qual é o pH de uma solução 0.01 M deste ácido, sabendo que Ka é 2×10^{-5} . (Massas atómicas: O – 16; C – 12; H – 1 g/mol; log 1,41 = 0,15; log 4,47 = 0,65 $\sqrt{2}$ = 1,41; $\sqrt{20}$ = 4,47)
	A. 3,35 B. 2 C. 5 D. 1 E. 0.3 São misturados 250 ml de uma solução 0.2 M de HCl e 150 ml de outra 0.4 M de NaOH. Qual será a espécie predominante
18.	São misturados 250 ml de uma solução 0.2 M de HCl e 150 ml de outra 0.4 M de NaOH. Qual será a espécie predominante da solução e a concentração final? A. [HCl] = 0,2 M B. [NaOH] = 0,025 M C. [NaOH] = 0,2 M D. Nenhuma E. [HCl] = 0,1 M
19.	Para os ácidos cloroso (HClO ₂ , K _a = 10 ⁻²), acético (CH ₃ COOH, K _a = 2 x 10 ⁻⁵), nitroso (HNO ₂ , K _a = 5 x 10 ⁻⁴), cianídrico
	(HCN, K _a = 5 x 10 ⁻¹⁰) e fenólico (C ₆ H ₅ OH, K _a = 10 ⁻¹⁰), as constantes de basicidade (K _b) para as suas bases conjugadas serão, respectivamente:
	A. 10^2 ; 5×10^4 ; 2×10^3 ; 2×10^9 ; 5×10^9 B. 10^{-5} ; 5×10^{-3} ; 2×10^{-4} ; 2×10^2 ; 5×10^2 C. 10^{-12} ; 5×10^{-10} ; 2×10^{-11} ; 2×10^{-5} ; 10^{-4} D. 10^{-12} ; 2×10^{-14} ; 5×10^{-20} ; 10^{-20}
20.	E. 10^{-9} ; 2×10^{-12} ; 5×10^{-11} ; 5×10^{-17} ; 10^{-17} A constante do produto de solubilidade (Kps) de um sal pouco solúvel com a fórmula AB ₂ é 2×10^{-11} .
20.	$((\sqrt{2} = 1, 1; \sqrt[3]{2} = 1, 2; \sqrt{5} = 2, 2; \sqrt{0, 5} = 0, 7; \sqrt[3]{5} = 1, 7; \sqrt[3]{0, 5} = 0, 8)$
	A solubilidade deste sal em mol/L, será:
	A. 1,1 x 10 ⁻⁶ mol/L B. 1,7 x 10 ⁻⁴ mol/L C. 1,2 x 10 ⁻⁴ mol/L D. 7 x 10 ⁻⁵ mol/L E. 8 x 10 ⁻⁴ mol/L

21.	Dadas as seguintes reacções:
	i. $CaCO_3(s) \rightarrow CaO(s) + CO_2 \uparrow$
	ii. $Ba^{2+}(aq) + CO_3^{2-}(aq) \rightarrow BaCO_3 \downarrow$
	iii. $Na_2CO_3(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + CO_2 \uparrow$
	iv. $HNO_3(aq) + H_2S(aq) \rightarrow NO \uparrow + S \downarrow + H_2O(1)$
	São reacções redox:
	A. i e ii B. i, ii e iii C. iv D. ii e iv E. i e iv
22.	Das reacções seguintes:
22.	bas reactors seguintes. (a) $2\text{Na}(s) + \text{O}_2(g) \rightarrow \text{Na}_2\text{O}(S)$ (b) $Cd(s) + \text{NiO}_2(s) + 2\text{H}_2\text{O}(l) \rightarrow Cd(OH)_2(s) + \text{Ni}(OH)_2(s)$
	(a) $2!\text{Va}(s) + O_2(g) \rightarrow \text{Va}(S)$ (b) $Cu(s) + \text{Va}(S) + 2\text{H}_2O(1) \rightarrow Cu(OH)_2(s) + \text{Va}(OH)_2(s)$ (c) $Cl_2(aq) + 2\text{Na}I(aq) \rightarrow I_2(aq) + 2\text{Na}Cl(aq)$ (d) $2H_2O(1) + \text{Al}(s) + \text{Mn}O_4(aq) \rightarrow \text{Al}(OH)_4(aq) + \text{Mn}O_2(s)$
	São oxidantes e redutores respectivamente os seguintes elementos:
	A. São redutores – Na, Ni, Cl, Mn; são oxidantes – O, Cd, Na, Al
	B. São redutores – Na, Cd, Cl, Al; são oxidantes – O, Cd, Na, Mn
	C. São redutores – Na, Cd, I (I'), Al; são oxidantes – O, Ni, Cl, Mn
	D. São redutores – Na, H, Cl, Al; são oxidantes – O, Cd, I, H ₂ O
22	E. São redutores – O, Ni, Cl, Mn; são oxidantes – Na, Cd, I, Al Os números de oxidação dos elementos nos compostos seguintes: (a) S em H ₂ SO ₄ ; (b) Cr em K ₂ CrO ₄ ; (c) Cl em HClO ₃ ; (d)
23.	
	S em S ₈ e; (e) C em H ₂ C ₂ O ₄
	Serão respectivamente:
	A. +6; +6; +5; 0; +3 B6; +4; -1; +6; +4 C. +4; +7; +1; 0; +4
2.4	D. +6; +7; -1; +6; -4 E. +6; +4; -3; 0; -2
24.	Para a reacção redox seguinte:
	$K_2Cr_2O_7(aq) + HCl(aq) \rightarrow KCl(aq) + CrCl_3(aq) + Cl_2(g) + H_2O(l)$
	Os coeficientes da equação de reacção química acertada serão respectivamente os seguintes:
	A. 2; 6; 2; 1; 3; 3 B. 1; 8; 2; 2; 1; 4 C. 1; 14; 2; 2; 3; 7
2.5	D. 1; 12; 2; 2; 3; 6 E. 2; 18; 4; 4; 1; 9
25.	Qual das frases abaixo é a melhor para completar a seguinte frase: "Um produto favorecido pela reacção redox tem"
	A. $\operatorname{um} \Delta G^0$ positivo e $\operatorname{um} E^0$ positivo B. $\operatorname{um} \Delta G^0$ negativo e $\operatorname{um} E^0$ positivo
	C. um ΔG^0 negativo e um E^0 negativo D. um ΔG^0 positivo e um E^0 negativo
	E. um ΔG^0 negativo e um E^0 igual a zero
26.	Analise as seguintes afirmações:
	i. A ponte salina numa célula electrolítica serve para manter o balanço de cargas. Sem a ponte salina a célula não
	funciona;
	ii. Numa célula a reacção de redução ocorre no ânodo e a de oxidação no cátodo
	iii. As espécies negativas são atraídas para ânodo e as positivas para o cátodo
	iv. O ânodo é negativo e o cátodo positivo.
	São verdadeiras as afirmações:
	A. i e ii B. i e iii C. i e iv D. ii E. iv
27.	Dadas as seguintes afirmações
	i. O valor do potencial do eléctrodo, E^0 , para (2Li ⁺ + 2e ⁻ \rightarrow 2Li) é o dobro que para (Li ⁺ + e ⁻ \rightarrow Li)
	ii. A constante de equilíbrio de uma reacção redox pode ser calculado pela equação de Nernst
	iii. A mudança das concentrações das espécies dissolvidas numa célula electroquímica não afecta o potencial da
	mesma
	iv. As condições padrão numa célula electroquímica são a concentração de 1,0 M para as espécies dissolvidas e 1 bar
	de pressão para os gases.
	São verdadeiras as afirmações:
	A. i e ii B. i e iii C. i e iv D. ii e iv E. iii e iv
28.	Coloque em ordem crescente o poder oxidante dos seguintes iões
	$NO_3^-(aq) + 4 H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O(l)$ $E^\circ = +0.96 V$
	$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ $E^{\circ} = +0.80 \text{ V}$
	$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s) \qquad E^{\circ} = -0.13 \text{ V}$
	$MnO_2(s) + H^+(aq) + 2 e^- \rightarrow Mn^{2+}(aq) + 2H_2O(1)$ $E^{\circ} = +1,23 \text{ V}$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	D. $Pb^{2+} < Ag^{+} < MnO_{2} < NO_{3}$ E. $Pb^{2+} < MnO_{2} < Ag^{+} < NO_{3}$
29.	Dados os seguintes potenciais-padrão de redução:
	$MnO_2(s) + H^+(aq) + 2 e^- \rightarrow Mn^{2+}(aq) + 2H_2O(l)$ $E^\circ = +1,23 \text{ V}$
	$I_2(s) + 2 e^{-} \rightarrow 2I^{-}(aq) \qquad E^{\circ} = +0.53 \text{ V}$
	Considere a condição que se segue e indique a alternativa certa. Assumindo que todas as espécies estão nas suas condições-
	padrão, se o par for ligado numa célula electroquímica, podemos dizer que:
	A. MnO ₂ será o cátodo e nele ocorrerá oxidação B. I ₂ será o cátodo e nele ocorrerá oxidação
	C. MnO ₂ será o ânodo e nele ocorrerá a oxidação D. I ₂ será o ânodo e nele ocorrerá a oxidação
20	E. I ₂ será o cátodo e nele ocorrerá a redução
30.	Uma célula galvânica é composta dos seguintes eléctrodos:
	$Ag^{+}(1.0 \text{ M}) + e^{-} \rightarrow Ag(s)$ $E^{\circ} = +0.80 \text{ V}$
	$Mg^{2+}(1.0 \text{ M}) + 2e^{-} \rightarrow Mg(s) \qquad E^{\circ} = -2.37 \text{ V}$
	A força electromotriz (f.e.m.) padrão da célula será:
	1 + 3 + 3 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7

31.	Calcule a massa, em gramas, de alumínio em 1 h de electrólise de AlCl ₃ numa corrente de 10 A. (F = 96 500 C/mol de e ⁻ ;
	Massa atómica Al – 27 g/mol; 3, 6/9, 65 = 0, 38; 1, 27 × 2, 7 = 3, 42)
	A. 3,6 g B. 0,38 g C. 1,27 g D. 9,65 g E. 3,42 g
32.	As fórmulas (a) C ₆ H ₁₂ , (b) C ₄ H ₆ , (c) C ₅ H ₁₂ , (d) C ₇ H ₁₄ e (e) C ₃ H ₄ representam um:
	A. (a) alceno ou cicloalcano; (b) alcino; (c) alcano; (d) alceno ou cicloalcano; (e) alcino
	B. (a) alcino; (b) cicloalcano; (c) cicloalcano; (d) alceno; (e) cicloalcano
	C. (a) alcano; (b) alcano; (c) alcano; (d) alcano; (e) alceno
	D. (a) cicloalcano; (b) alceno; (c) alcano; (d) alcino; (e) alcino
	E. (a) alcano ou cicloalcano; (b) alceno; (c) alcano; (d) alcano ou cicloalcano; (e) alceno
33.	Nas reacções de adição de alcenos, a adição de hidrogénio é feita no carbono mais hidrogenado. Esta regra é conhecida
	como:
	A. Regra de Kharash B. Regra de Saytzeff (Zaitsev) C. Regra de Markovnikov D. Regra de Pauli
	E. Regra de Kirchhoff
34.	Nomeie o composto representado pela fórmula seguinte (escolha a alternativa correcta):
	A. 2 – propil – 3 – metilpentano B. 2 - butilpentano C. 3, 4 – dimetilheptano CH ₃ – CH ₂ – CH – CH ₃ CH ₃ – CH – CH ₂
	B. 2 - butilpentano
	C. $3, 4$ – dimetilheptano CH_3 – CH – CH_2
	D. $3 - \text{etil} - 4 - \text{metilhexano}$
	E. $2 - \text{pentilbutano}$ CH ₃ - $\frac{\text{CH}_2}{\text{CH}_2}$
35.	Na combustão completa de 20 moles de alceno são produzidos 60 moles de dióxido de carbono. O alceno queimado pode
	ser:
	A. Buteno 1 B. Buteno 2 C. Eteno D. Propeno E. Hexeno
36.	O mesitileno é um hidrocarboneto encontrado no petróleo bruto e sua fórmula empírica é C ₃ H ₄ . Foi determinado
	experimentalmente que sua massa molecular é de 120,19 uma. Qual será a sua fórmula molecular? (massa atómica C – 12
	uma; H – 1 uma)
	A. C ₃ H ₄ B. C ₃₆₀ H ₄₈₀ C. C ₄ H ₃₆ D. C ₉ H ₁₂
	E. Os dados são insuficientes para a determinação da fórmula
37.	
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente:
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear B. Mononuclear, mononuclear, mononuclear
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear D. Mononuclear, polinuclear
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear
38.	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear Substituindo os hidrogénios da água por um radical metil e outro isopropil obtém-se:
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear Substituindo os hidrogénios da água por um radical metil e outro isopropil obtém-se: A. Aldeído B. Cetona C. Éster D. Éter E. Álcool
38.	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear C. Éster D. Éter E. Álcool Dadas as seguintes fórmulas: (a) C2H6O; (b) C3H6O; (c) CH4O; (d) C2H4O2
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear B. Mononuclear, mononuclear, mononuclear, polinuclear D. Mononuclear, polinuclear, polinuclear E. Substituindo os hidrogénios da água por um radical metil e outro isopropil obtém-se: A. Aldeído B. Cetona C. Éster D. Éter E. Álcool Dadas as seguintes fórmulas: (a) C2H6O; (b) C3H6O; (c) CH4O; (d) C2H4O2 São fórmulas de ácido carboxílico e de álcool as seguintes:
39.	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear E. Aldeído B. Cetona C. Éster D. Éter E. Álcool Dadas as seguintes fórmulas: (a) C2H6O; (b) C3H6O; (c) CH4O; (d) C2H4O2 São fórmulas de ácido carboxílico e de álcool as seguintes: A. (a) e (b) B. (a) e (c) C. (a) e (d) D. (b) e (c) E. (d) e (c)
	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Éster D. Éter E. Álcool Dadas as seguintes fórmulas: (a) C2H6O; (b) C3H6O; (c) CH4O; (d) C2H4O2 São fórmulas de ácido carboxílico e de álcool as seguintes: A. (a) e (b) B. (a) e (c) C. (a) e (d) D. (b) e (c) E. (d) e (c) Os plásticos são uma classe de materiais muito importantes para a nossa vida nos dias de hoje. Eles são classificados como
39.	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear Substituindo os hidrogénios da água por um radical metil e outro isopropil obtém-se: A. Aldeído B. Cetona C. Éster D. Éter E. Álcool Dadas as seguintes fórmulas: (a) C2H6O; (b) C3H6O; (c) CH4O; (d) C2H4O2 São fórmulas de ácido carboxílico e de álcool as seguintes: A. (a) e (b) B. (a) e (c) C. (a) e (d) D. (b) e (c) E. (d) e (c) Os plásticos são uma classe de materiais muito importantes para a nossa vida nos dias de hoje. Eles são classificados como
39.	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Éster D. Éter E. Álcool Dadas as seguintes fórmulas: (a) C2H6O; (b) C3H6O; (c) CH4O; (d) C2H4O2 São fórmulas de ácido carboxílico e de álcool as seguintes: A. (a) e (b) B. (a) e (c) C. (a) e (d) D. (b) e (c) E. d) e (c) Os plásticos são uma classe de materiais muito importantes para a nossa vida nos dias de hoje. Eles são classificados como
39.	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, mononuclear, mononuclear E. Polinuclear, polinuclear E. Polinuclear, polinuclear E. Polinuclear, polinuclear E. Polinuclear, mononuclear, mononuclear E. Polinuclear, polinuclear E. Polinuclear, polinuclear E. Polinuclear, polinuclear E. Polinuclear, mononuclear, mononuclear, mononuclear E. Polinuclear, polinuclear E. Polinuclear, polinuclear E. Polinuclear, mononuclear, mononuclear, mononuclear E. Polinuclear, polinuclear E. Polinuclear E. Polinuclear, polinuclear E. Polinuclear E. Polinuclear, polinuclear E. Polinuclear E. Polinuclear E. Polinuclear E. Polinuc
39.	O benzeno, naftaleno e antraceno são hidrocarbonetos aromáticos que apresentam cadeias cíclicas aromáticas respectivamente: A. Mononuclear, mononuclear, polinuclear C. Polinuclear, mononuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Polinuclear, polinuclear, polinuclear E. Polinuclear, polinuclear, polinuclear C. Éster D. Éter E. Álcool Dadas as seguintes fórmulas: (a) C2H6O; (b) C3H6O; (c) CH4O; (d) C2H4O2 São fórmulas de ácido carboxílico e de álcool as seguintes: A. (a) e (b) B. (a) e (c) C. (a) e (d) D. (b) e (c) E. d) e (c) Os plásticos são uma classe de materiais muito importantes para a nossa vida nos dias de hoje. Eles são classificados como

Fim!